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Solution of Dirichlet Problems by the Exodus Method

Matthew N. O. Sadiku, Senior Member, IEEE, and David T. Hunt

Abstract—The paper proposes the application of the Exodus
method to Dirichlet problems in rectangular and axisymmetric
solution regions. The stochastic technique is illustrated with
specific practical applications to the solution of Laplace’s equa-
tion. Although the method is probabilistic in its approach, it is
not subject randomness as other Monte Carlo techniques be-
cause it does not involve the use of a psendo-random generation
subroutine. The method provides a more accurate solution in
less amount of time compared with the fixed random walk. It
is also found that the accuracy of the Exodus method is com-
parable to that of the finite difference method.

I. INTRODUCTION

HE MONTE CARLO technique is essentially a means

of estimating expected values, and hence is a form of
numerical quadrature. Although the technique can be ap-
plied to simple processes and estimating multidimen-
sional integrals, the technique has been applied with suc-
cess by various workers to solve potential problems [1]-
[5]. Besides the fact that the Monte Carlo methods
(MCM’s) do not require input data, they are conceptually
easier to understand and program compared with other nu-
merical techniques.

There are two kinds of Monte Carlo methods. One type
of MCM’s requires the use of random numbers. This in-
cludes the fixed random walk and the floating random
walk. A common feature of these MCM’s is the idea of
randomness of walk. The other type of MCM’s does not
require using random numbers. A typical example of this
type is the so-called Exodus method, first suggested in [6]
and applied to heat problems. While the random walk
MCM’s are popular in the electromagnetic community,
the Exodus method is not so familiar. Although the
method is probabilistic in its approach, it is not subject to
randomness as other Monte Carlo techniques because it
does not involve the use of a pseudo-random generation
subroutine. This makes the solution independent of the
computing facilities. Also the method provides results
with the same degree of accuracy as those obtained using
the finite difference method or the regular random walk
Monte Carlo methods.

A simple introduction to Monte Carlo techniques, in-
cluding the Exodus method, is presented in [7]. In this
paper, we apply the Exodus method to Dirichlet problems
in rectangular and axisymmetric solution regions. The
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teéhnique is illustrated with specific practical applications
to the solution of Laplace’s equation. The method gives
the ‘‘exact’’ solution in the sense that the main source of
error is in the estimation of the transition probabilities
which are calculated in such a way that randomness is
avoided. '

II. THEORY

In this section we briefly present the theoretical back-
ground for the Exodus method. We specifically apply the
method to Dirichlet problems in both rectangular and axi-
symmetric solution regions.

To apply the Exodus method in finding the solution of
a potential problem usually involves the following three
steps:

1) We first obtain the random walk probabilities from
the finite difference equivalent of the partial differ-
ential equation describing the problem.

2) The Exodus method is used along with the random
walk probabilities in calculating the transition prob-
abilitiés.

3) The potential at the point of interest is finally ob-
tained using the transition probabilities and the
boundary conditions.

As with other MCM’s, the major disadvantage of the Ex-
odus method is that it only permits calculating the poten-
tial at one point at a time. With fast computing facilities,
this drawback is not a problem if the potential at few
points is needed and accurate solutions are necessary.

A. Rectangular Solution Region

Suppose the Exodus method is to be applied in solving
Laplace’s equation

V2V= 0 in region R 4]
subject to Dirichlet boundary condition
V = ¥V, on boundary B. 2)

We begin by dividing the rectangular solution region R
into a mesh and derive the finite difference equivalent.
Assuming a mesh with Ax = Ay = A, the finite difference
equivalent of (1) is [§]

-V y) =p Ve + 4,y +p Vix — A, y)
+pye Ve, y + 4) +p, Vi, y — 4) (3)
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where

px+ = px— = py+ = py— = % (4)

A probabilistic interpretation to (3) is that a random walk-
ing particle at an arbitrary point (x, y) in R has probabil-
ities p,., Px—, Py+, and p,_ of moving from (x, y) to the
neighboring points (x + A, y), (x — A, y), (x, y + 4),
and (x, y — A) respectively. Henceforth, p,., p,._, py+,
and p,_ will be referred to as the random walk probabil-
ities.

It is also important to consider an extension of the MCM
for the solution of problems with discrete homogeneities,

e., homogeneous media separated by interfaces. Con-
sider the interface along y = constant plane as shown in
Fig. 1. The finite difference equivalent of the boundary
condition D,, = D,, at the interface is obtained by apply-
ing § D - dS = 0 to the interface. The result is [9]

Va = Dx+ Vl + p,- V2 + Py+ V3 + Py- V4 (5)

where

€

2e + &) ©

Dy- =
An interface along x = constant plane can be treated in a
similar manner.
On a line of symmetry, the condition 8V /dn = 0 must
be imposed. If the line of symmetry is along the y-axis as
in Fig. 2(a): ‘

Vo = DPx+ Vl + py+ V3 + py-— V4 (7)

where
=p- =3 ®

The line of symmetry along the x-axis, shown in Fig. 2(b),
is treated similarly. -

1
P+ = 3 py+

B. Axisymmetric Solution Region
For V = V(p, 2), (1) becomes
3’V

v v v
dp?

b Tz = ®

For ease of computation, we assume a square grid so that

the step sizes along p and z coordinates are equal, i.e.,

Ap = Az = A. The finite difference approximation for p

# 01is [10]

V(p,2) = pos V(p + A,2) +p,-V(p — A2
+pz+V(p7Z + A) +PZ_V(p,Z _A) (10)

where

Pt =P = (11a)

Fig. 1. Interface between media of dielectric permittivities ¢, and e,.

y
Vs
v, —1,
v, y Vs
A
* VZ vo Vl

(@ (b)
Fig. 2. Satisfying symmetry conditions: (a) 8V /3x = 0, (b) 3V /3y = 0.

1 A
P =3t (11b)
1A
== . 11
Po- =4 7 % (11c)
Note that the random walk probabilities satisfy
Piv T Pov T Ppr T P- = 1 (12)

Equations (10) and (11) do not apply when p = 0. Since
aV/dp = 0 at p = 0, applying L’Hopital’s rule yields

1oV 3°V :
on0pdp 2 (1)
Hence at p = 0, Laplace’s equation becomes
2
2 %2/ + (?3275 =0 (14)
and the finite difference equivalent is
VO, 2) = pp V(A, 2) + p.+ V0, 2 + 4)
+p, V0,z — A) (15)
where
Per =Pe- =5 Por =5 Pp- =0 (16)

For the z = constant interface, the boundary condition
D,, = D,,ore 8V, /3z = e, 3V, / 9z leads to random walk
probabilities:

€1

Per = 2(e; + €)

. €

e o

P~ =
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while p,_ and p,, remain as in (11). For p = constant
interface, the boundary condition (e;/p)dV,/dp =
(e2/p) 0V, /dp leads to

- (;4+2
Po+ 2(e; + &) 2p

_ € 1 — A
Po= = 26 + &) 20/

while p,. and p,, remain as in (11).

(18)

C. Exodus Method

Suppose for concreteness we are interested in solving
the problem defined in (1) and (2), and the potential at a
specific point (x,, y,) is to_be determined. We define the
transition probability p, as the probability that a random
walk starting at the point of interest (x,, y,) in R ends at
a boundary point (x;, y,) with prescribed potential V), (k),
ie.,

Pr = Prob (xo, Yo - Xks yk) (19)

If there are M boundary or fixed nodes (excluding the cor-
ner points since a random walk never terminates at those
points), the potential at the starting point (x,, y,) of the
random walks is

M

Vo yo) = 20 PiVp®). 20)
If m is the number of different boundary potentials, (20)
can be simplified to

Vo yo) = 2 Vo), @1
where py, in this case is the probability that a random walk
terminates on boundary k. Since V, (k) is specified, our
problem is reduced to finding p,. It is evident from (21)
that the value of V(x,, y,) would be ‘‘exact’’ if only the
transition probabilitics p, are calculated exactly. The val-
ues of p; can be obtained analytically using an expansion
technique described in [11]. But this approach is limited
to homogeneous rectangular solution regions. For
inhomogeneous or nonrectangular regions, we must resort
to some numerical technique. The Exodus method offers
a numerical means of finding p,.

To apply the Exodus method, let P(i, j) be the number
of particles at point (i, j) in R. We begin the application
of the Exodus method by setting P(i, j) = 0 at all nodes
(both fixed and free) except at free node (x,, y,) where
P(i, j) assumes a large number N (say, N = 10° or more).
In other words, we introduce a large number of particles
at (x,, ¥,) to start with. By scanning the mesh as is usually
done in finite difference analysis, we dispatch the par-
ticles at each free node to its neighboring nodes according
to the random walk probabilities p,., p._, py+, and p,_
as illustrated in Fig. 3. Note that in Fig. (3b), new P(i, j)
= ( at the node, while old P(i, j) is shared among the

P(1,j+1)
q

P(i-1,) e * P(i+1,j)

-P(1))

L
P(,j-1)
(@)

P(1,+1) + PQ,
(13 )‘ B (L)

P(i-1) + p,_PG) PG+1)) + p_, P(L)

P(1,1)=0

PUi-1) * B _P()

()

Fig. 3. (a) Before the particles at (7, j) are dipatched, (b) After the particles
at (i, j) are dispatched.

neighboring nodes. At the end of each iteration (i.e. scan-
ning of the free nodes in R as illustrated in Fig. 3), we
record the number of particles that have reached the
boundary (i.e. the fixed nodes), where the particles are
absorbed. We keep scanning the mesh in a manner similar
to the iterative process applied in finite difference solution
[8] until a set number of particles (say 99.99% of N) have
reached the boundary. If N, is the number of particles that
reached boundary &, we calculate

_ e (22
Pe = N )
Hence (21) can be written as
PR ARG
V(xw ya) = (23)

N

Thus the problem is reduced to just finding N, using the
Exodus method, given N and V), (k). We notice that if N
— o, A = 0, and all the particles were allowed to reach
the boundary points, the values of p; and consequently
V(x,, y,) would be exact. It is easier to approach this ex-
act solution using Exodus method than other MCM’s and
perhaps other numerical techniques such as finite differ-
ence and finite element methods. This fact will be dem-
onstrated with examples in the next section.

For an axisymmetric solution region, we find the tran-
sition probability p; = Prob ( p,, 2, = 0, 2¢) in the same
way except that at each node we use random walk prob-
abilities p,, P+, Po+, and p,_ in dispatching the parti-
cles.
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V=0

Fig. 4. Potential system for Example 1.

III. TypicaL EXAMPLES

We shall illustrate the application of the Exodus method
by means of three numerical examples. The first example
has an analytic solution so that the accuracy and validity
of the Exodus method can be checked. The results from
the two other examples are compared with the corre-
sponding fixed randem walk MCM and finite difference
solutions.

Example 1: Consider the potential problem shown in
Fig. 4. The potentials at x = 0, x = g, and y = 0 sides
are zero while the potential at y = b side is V,,. The ana-
Iytic solution to this problem using series expansion tech-
nique [12], [13] is

Z‘ sin Bx[a, sinh By + b, cosh By},

V= 0<y=<c (24)
/Efﬁm&ﬁm@g c<y=<b
where
B="2 n=2k-1,
a
a, = 4V,[e, tanh B¢ — ¢, coth Bc]/d,,
by = 4V,(er — €)/dy,
¢, = 4V,[e, tanh Bc — ¢, coth B¢
+ (&2 — ¢)coth Bc}/d,,
d, = nw sinh $b[e, tanh B¢ — €, coth B¢
+ (e; — €) coth 8b]. 25)

Typically, values
v, = 100,
a =30, b=2.0,

€ = €,, € = 2.25¢,,
c=1.0

were used in all calculations. The potentials were calcu-
lated at five typical points using the Exodus method, the

TABLE I
REsSULTS OF EXAMPLE 1

Exodus Finite Exact

Method Fixed Random Difference Solution
x y Vv Walk (V £ 6) 14 vV
0.5 1.0 13.41 13.40 + 1.113 13.16 13.41
1.0 1.0 21.13 20.85 + 1.612 20.74 21.13
1.5 1.0 23.43 23.58 + 1.2129 22.99 . 2343
1.5 0.5 10.52 10.13 + 0.8789 10.21 10.51
1.5 1.5 59.36 58.89 + 2.1382 59.06 59.34

fixed random walk Monte Carlo method, and the analytic
solution. The number of particles, N, was taken as 107 for
the Exodus method and the step size A = 0.05 was used.
For the fixed random walk method, A = 0.05 and 2000
walks were used. It was noted that 2000 walks were suf-
ficient for the random walk solutions to converge. The
results are displayed in Table I. In the table, § is the error
estimate, which is obtained by repeating each calculation
five times and using statistical formulas provided in [14].
It should be noted from the table that the results of the
Exodus method agree to four significant places with the
exact solution. Thus the Exodus method is more accurate
than the random walk technique. It should aiso be noted
that the Exodus method does not require the use of a ran-
dom number routine and also the need of calculating the
error estimate. The Exodus method, therefore, takes less
computation time than the random walk method.

To be able to check the results of the next two exam-
ples, which do not have exact solutions, we decided to
solve this example using the finite difference method. The
finite difference results are shown in Table I for the same
step size A = 0.05 and 1000 iterations. It was observed
that 1000 iterations were sufficient for the finite difference

" solutions. It should be noted from Table I that the Exodus

method gives a solution as accurate as the finite difference
method.

Example 2: Consider the potential problem shown in
Fig. 5. The potentials at x = 0, x = w, and y = 0 sides
are zero while the potential at y = & side is V,,. The prob-
lem is solved in [4] using the fixed random walk tech-
nique. Typically, values

V, = 100, € =3¢, a=b=0.5,

h=w=10

€1 = €ps

were used in all calculations. This problem was solved
using the Exodus method with A = 0.05 and N = 10". At
the corner point (x, y) = (a, b), (6) does not apply. It can
be shown by applying § D - dS = 0 that at this point

€ _ (e + &)

Pr+ - 361 + 62’ Pe- = py— B 2(361 + 62).

= Py+

Since the problem has no exact solution, we compare the

result with those obtained using the fixed random walk
method with A = 0.05 and 2000 walks and finite different
method with A = 0.05 and 500 iterations. The 2000 walks
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V=0

Fig. 5. Potential system for Example 2.
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Fig. 6. An electrostatic particle focusing system; for Example 3 (all di-
mensions are in cm).

TABLE II
RESULTS OF EXAMPLE 2

Exodus

Finite
Method Fixed Random Difference
x y V. Walk (V + 6) 14

0.25 0.5 10.269 9.7951 + 1.0593 10.166
0.5 0.5 16.667 16.602 '+ 1.0865 16.576
0.75 0.5 15.931 15.872 + 1.0247 15.887
0.5 0.75 51.931 . 50.775 + 2.039%4 50.928
0.5 0.25 6.2163 6.1069 + 0.9585 6.1772

and 500 iterations were enough for the convergence of
random walk and finite difference solutions respectively.
Table II presents the results for five typical points. As
evident from the table, the Exodus method provides a
more accurate solution in less amount of time compared
with the fixed random walk. It is felt that the solution
from the Exodus method is as accurate as that from
finite difference method from the experience gained in
Example 1.

Example 3: The last example is an axisymmetric prob-
lem shown in Fig. 6. This particular example is actually
a prototype of an electrostatic particle focusing system

TABLE i1
RESULTS OF EXAMPLE 3
Finite
Exodus Fixed Random Difference

p z vV Walk (V + 8) vV
5 18 . 11.438 10.75 + 0.6345 11.474
5 10 27.816° 25.98 + 1.777 27.869
5 2 12.179 11.44 + 0.8402 12.128
10 2 2.3523 2.48 + 0.5528 2.3421
15 2 0.38423 0.49 + 0.2648 0.3965

employed in a recoil-mass time-of-flight spectrometer. It
is intractible by analytic methods, yet presents no real dif-
ficulties for a Monte Carlo treatment. The fixed random
walk solution to this problem is presented in [5]. Using
the Exodus method, the potentials were calculated at five
typical points with A = 0.2 and N = 107. The results are
compared with both the fixed random walk and the finite
difference results in Table III. For the finite difference cal-
culations, A = 0.25 and A = 0.5 gave nearly the same
results for 1000 iterations. Again, it is evident from Table

III that the results of the Exodus and finite difference

methods closely agree. Also, it is noticed that the Exodus
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Fig. 7. Potential distribution along p = 5 ¢m, 0 < z < 20 cm; for Example 3.
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Fig. 8. Potential distribution along z = 8 cm, 0 < p < 20 cm; for Example 3.

method is more accurate than the fixed random walk. Figs.
7 and 8 show the potential distribution (obtained using the
Exodus method) along p = Scm, 0 < 7z < 20 cm and z
=8cm, 1 < p =< 20 cm respectively.

IV. CONCLUSIONS

The Exodus method provides a relatively straightfor-
ward means of solving Dirichlet problems. The method
has been illustrated with three typical problems in rectan-
gular and axisymmetric solution regions. The method
provides a more accurate solution in less amount of time
compared with the fixed random walk. Although the
method is probabilistic in its approach, it is not subject to
randomness as other Monte Carlo techniques because it
does not involve the use of a pseudo-random generation
subroutine. It is also found that the Exodus method gives
a solution as accurate as that obtained with the finite dif-
ference method.
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