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Solution of Dirichlet Problems by the Exodus Method
Matthew N. O. Sadiku, Senior Member, IEEE, and David T. Hunt

Abstract—The paper proposes the application of the Exodus

method to Dirichlet problems in rectangular and axisymmetric
solution regious. The stochastic technique is illustrated with
specific practical applications to the solution of Lapiace’s equa-

tion. Although the method is probabilistic in its approach, it is

not subject randomness as other Monte Carlo techniques be-

cause it does not involve the use of a pseudo-random generation

subroutine. The method provid,es a more accurate solution in

less amount of time compared with the fixed random walk. It

is also found that the accuracy of the Exodus method is com-

parable to that of the finite difference method.

I. INTRODUCTION

T HE MONTE CA.RLO technique is essentially a means

of estimating expected values, and hence is a form of

numerical quadrature. Although the technique can be ap-

plied to simple processes and estimating multidimen-

sional integrals, the technique has been applied with suc-

cess by various workers to solve potential problems [l]-

[5]. Besides the fact that the Monte Carlo methods

(MCM’S) do not require input data, they are conceptually

easier to understand and program compared with other nu-

merical techniques.

There are two kinds of Monte Carlo methods. One type

of MCM’S requires the use of random numbers. This in-

cludes the jixed random walk and the jioating random

walk. A common feature of these MCM’S is the idea of

randomness of walk. The other type of MCM’s does not

require using random numbers. A typical example of this

type is the so-called Exodus method, first suggested in [6]

and applied to heat problems. While the random walk

MCM’S are popular in the electromagnetic community,

the Exodus method is not so familiar. Although the

method is probabilistic in its approach, it is not subject to

randomness as other Monte Carlo techniques because it

does not involve the use of a pseudo-random generation

subroutine. This makes the solution independent of the

computing facilities. Also the method provides results

with the same degree of accuracy as those obtained using

the finite difference method or the regular random walk

Monte Carlo methods.

A simple introduction to Monte Carlo techniques, in-

cluding the Exodus method, is presented in [7]. In this

paper, we apply the Exodus method to Dirichlet problems

in rectangular and axisymmetric solution regions. The
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technique is illustrated with specific practical applications

to the solution of Laplace’s equation. The method gives

the “exact” solution in the sense that the main source of

error is in the estimation of the transition probabilities

which are calculated in such a way that randomness is

avoided.

II. THEORY

In this section we briefly present the theoretical back-

ground for the Exodus method. We specifically apply the

method to Dirichlet problems in both rectangular and axi-

symmetric solution regions.

To apply the Exodus method in finding the solution of

a potential problem usually involves the following three

steps:

1)

2)

3)

We first obtain the random walk probabilities from

the finite difference equivalent of the partial differ-

ential equation describing the problem.

The Exodus method is used along with the random

walk probabilities in calculating the transition prob-

abiliti&.

The potential at the point of interest is finally ob-

tained using the transition probabilities and the

boundary conditions.

As with other MCM’S, the major disadvantage of the Ex-

odus method is that it only permits calculating the poten-

tial at one point at a time. With fast computing facilities,

this drawback is not a problem if the potential at few

points is needed and accurate solutions are necessary.

A. Rectangular Solution Region

Suppose the Exodu; method is to be applied in solving

Laplace’s equation

V z V= O in region R (1)

subject to Dirichlet boundary condition

V = V~ on boundary B. (2)

We begin by dividing the rectangular solution region R

into a mesh and derive the finite difference equivalent.

Assuming a mesh with Ax = Ay = A, the finite difference

equivalent of(1) is [8]

V(x, y) = p,+ V(x + A, y) + PX_ V(x – A, y)

+ pY+ V(X, y + A) + PY- V(X, y – A) (3)
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where

PX+-=PX- ‘Py+ ‘Py - = :.
(4)

A probabilistic interpretation to (3) is that a random walk-

ing particle at an arbitrary point (x, y) in Z?has probabil-

ities p,+, pX_, py+, and py - of moving from (x, Y) to the

neighboring points (.x + A, y), (X – A, Y), (x, Y + A),

and (x, y — A) respectively. Hencefoflh, p~+, p.–, Py+,
and py _ will be referred to as the random walk probabil-

ities.

It is also important to consider an extension of the MCM

for the solution of problems with discrete homogeneities,

i.e., homogeneous media separated by interfaces. Con-

sider the interface along y = constant plane as shown in

Fig. 1. The finite difference equivalent of the boundaty

condition Dl~ = Dz. at the interface is obtained by apply-

ing $ D . dS = O to the interface. The result is [9]

V. = p.+ Jj + p.- ~2 + Py+ ~3 + Py - ~4 (5)

where

1 El
P.+ ‘P.- =~? Py+ = 2(E, + E2)’

’52

‘y- = 2(E, + 62)”
(6)

An interface along x = constant plane can be treated in a

similar manner.

On a line of symmetry, the condition dV/&z = O must

be imposed. If the line of symmetry is along the y-axis as

in Fig. 2(a):

V. = p.+ VI + Py+ ~3 + Py - ~4 (7)

where

P.+ = ; Py+ = py - =:. (8)

The line of symmetry along the x-axis, shown in Fig. 2(b),

is treated similarly.

B. Axisymmetric Solution Region

For V = V( p, z), (1) becomes

azv -+~W’+a2v _ . .
ap 2

0. (9)
p ap azz

For ease of computation, we assume a square grid so that

the step sizes along p and z coordinates are equal, i.e.,

Ap = Az = A. The finite difference approximation for p

* O is [10]

V(p, Z)=pO+V(p +A, Z)+ PP-V(P-A, Z)

+pZ+V(i,, Z+ A)+ P,- V(P>Z– A) (lo)

where

(ha)

Fig. 1. Interface between media of dielectric permittivities c, and 62.
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Fig. 2. Satisfying symmetry conditions: (a) dV\& = O, (b) dV/dy = O.
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Note that the random walk probabilities satisfy

P,+ +Pz+ +PP+ +PP- = 1. (12)

Equations (10) and (11) do not apply when p = O. Since

8 V/8p = O at p = O, applying L’Hopital’s rule yields

Hence at p = O, Laplace’s equation becomes

Zazv azv
ap

—–o
2+aZ2–

(13)

(14)

and the finite difference equivalent is

V(O, z) = PP+ V(A, Z) + p,+ V(O, Z + A)

+ p,- V(O, z – A) (15)

where

4

P,+ ‘P,- =;2 Po+ ‘6> PP - = 0. (16)

For the z = constant interface, the boundary condition

D1. = D2. or El 8 VI /8z = ez8 V2/8z leads to random walk

probabilities:

61

‘z+ = 2(f, + 62)

62

‘z- = 2(C, + E2)’
(17)
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while PO. and pP + remain as in (11). For p = constant

interface, the boundary condition (e] /p) dVl /13p =

(e2/p) r3V2/dp leads to

while pZ_ and p:+ remain as in (1 1).

C. Exodus Method

(18)

Suppose for concreteness we are interested in solving

the problem defined in (1) and (2), and the potential at a

specific point (xO, yO) is to. be determined. We define the

transition probability pk as the probability that a random

walk starting at the point of interest (XO, yO) in R ends at

a bounda~ point (xk, y~ ) with prescribed potential V~(k),

i.e.,

Pk = ~’rob (%, Y. + Xk, Yk).
(19)

If there are M boundary or fixed nodes (excluding the cor-

ner points since a random walk never teqninates at those

points), the potential at the starting point (xO, yO) of the

random walks is

V(xo, yo) = ,$,p, v, (k) . (20)

If m is the number of different boundary potentials, (20)

can be simplified to

m

~(Xo, Yo) = ,2, Pk ~, (k) , (21)

where pk in this case is the probability that a random walk

terminates on boundary k. Since Vb (k) is specified, our

problem is reduced to finding pk. It is evident from (21)

that the value of V(XO, yO) would be “exact” if only the

transition probabilities pk are calculated exactly. The val-

ues of pk can be obtained analytically using an expansion

technique described in [1 1]. But this approach is limited

to homogeneous rectangular solution regions. For

inhomogeneous or nonrectangular regions, we must resort

to some numerical technique. The Exodus method offers

a numerical means of finding P,@

To apply the Exodus method, let P(i, j) be the number

of particles at point (i, j) in R. We begin the application

of the Exodus method by setting P(i, j) = O at all nodes

(both fixed and free) except at free node (.xO, yO) where

P(i, j) assumes a large number N (say, N = 106 or more).

In other words, we introduce a large number of particles

at (x., yo) to start with. By scanning the mesh as is usually

done in finite difference analysis, we dispatch the par-

ticles at each free node to its neighboring nodes according
to the random walk probabilities pX +, PX-, pY+, and Py.

as illustrated in Fig. 3. Note that in Fig. (3 b), new F’(i, j)

= O at the node, while old P(i, j) is shared among the

P(i

P(l,j+l)

P(l-1,])

+

~ P(i+l,j)

-P(l,J)

4
P(l,j–1)

(a)

P(l,J+l) + P#(l,j)

J-

l,J) + px_p(l,J) P(l+l,J) + Px+p(l,])

~P(LJ)=o

d
P(l,J–l) + py _ P(l,J)

(b)

Fig. 3. (a) Before the particles at (i, j) are dipatched, (b) After the particles

at (i, j) are dispatched.

neighboring nodes. At the end of each iteration (i.e. scan-

ning of the free nodes in R as illustrated in Fig. 3), we

record the number of particles that have reached the

boundary (i.e. the fixed nodes), where the particles are

absorbed. We keep scanning the mesh in a manner similar

to the iterative process applied in finite difference solution

[8] until a set number of particles (say 99.99% of N) have

reached the boundary. If Nk is the number of particles that

reached boundary k, we calculate

Hence (21) can be written as

k:,Nkvb(k)

V(xo, y.) = —~.

(22)

(23)

Thus the problem is reduced to just finding Nk using the

Exodus method, given N and VP(k). We notice that if N
- m, A + O, and all the particles were allowed to reach

the boundary points, the values of pk and consequently

V(XO, yO) would be exact. It is easier to approach this ex-

act solution using Exodus method than other MCM’s and

perhaps other numerical techniques such as finite differ-

ence and finite element methods. This fact will be dem-

onstrated with examples in the next section.

For an axisymmetric solution region, we find the tran-

sition probability pk = Prob ( Po, z~ + ,ok, zk) in the same

way except that at each node we use random walk prob-

abilities p:+, p:+, pP +, and Pp – in dispatching the parti-

cles.
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TV=() ,V=07

Fig. 4. Potential system for Example 1.

III. TYPICAL EXAMPLES

We shall illustrate the application of the Exodus method

by means of three numerical examples. The first example

has an analytic solution so that the accuracy and validity

of the Exodus method can be checked. The results from

the two other examples are compared with the corre-

sponding fixed random walk MCM and finite difference

solutions.
Example 1: Consider the potential problem shown in

Fig. 4. The potentials at x = O, x = a, and y = O sides

are zero while the potential at y = b side is VO. The ana-

lytic solution to this problem using series expansion tech-

nique [12], [13] is -

v=

where

~ sin (3x[a. sinh /3y + bn cosh 8YI,
k=l

p=%, n=2k–1,

an = 4V0 [Cl tanh 13c – q coth (3c] /d.,

+ (C2– e,) coth Pc] /d.,

d. = n~ sinh ~b[~, tanh Pc – ~z coth /3c

+ (CZ – El) coth ~b] .

Typically, values

VO = 100, El = eO, Cz = 2.25~o,

(24

(25)

a = 3.0, b = 2.0, c = 1.0

were used in all calculations. The potentials were calcu-

lated at five typical points using the Exodus method, the

TABLE I

RESULTS OF EXAMPLE 1

Exodus Finite Exact

Method Fixed Random Difference Solution

x Y v Walk (V + 8) v v

0.5 1.0 13.41 13.40 i 1.113 13.16 13.41

1.0 1.0 21.13 20.85 + 1.612 20.74 21.13

1.5 1.0 23.43 23.58 f 1.2129 22.99 23.43

1.5 0.5 10.52 10.13 k 0.8789 10.21 10.51

1.5 1.5 59.36 58.89 i 2.1382 59.06 59.34

fixed random walk Monte Carlo method, and the analytic

solution. The number of particles, N, was taken as 107 for

the Exodus method and the step size A = 0.05 was used.

For the fixed random walk method, A = 0.05 and 2000

walks were used. It was noted that 2000 walks were suf-

ficient for the random walk solutions to converge. The

results are displayed in Table I. In the table, 6 is the error

estimate, which is obtained by repeating each calculation

five times and using statistical formulas provided in [14].

It should be noted from the table that the results of the

Exodus method agree to four significant places with the

exact solution. Thus the Exodus method is more accurate

than the random walk technique. It should also be noted

that the Exodus method does not require the use of a ran-

dom number routine and also the need of calculating the

error estimate. The Exodus method, therefore, takes less

computation time than the random walk method.

To be able to check the results of the next two exam-

ples, which do not have exact solutions, we decided to

solve this example using the finite difference method. The

finite difference results are shown in Table I for the same

step size A = 0.05 and 1000 iterations. It was observed

that 1000 iterations were sufficient for the finite difference

solutions. It should be noted from Table I that the Exodus

method gives a solution as accurate as the finite difference

method.

Example 2: Consider the potential problem shown in

Fig. 5. The potentials at x = O, x = w, and y = O sides

are zero while the potential at y = h side is Vo. The prob-

lem is solved in [4] using the fixed random walk tech-

nique. Typically, values

VO = 100, ~[ = ~., ~2 = 3e0, a = b = 0.5,

h=w=l. o

were used in all calculations. This problem was solved

using the Exodus method with A = 0.05 and N = 107. At

the corner point (x, y) = (a, b), (6) does not apply. It can

be shown by applying $ D . df$ = O that at this point

e, (E, + q)
P.+ = Py+ =

3C, + q
, px - = pv - =

2(3c1 + q)’

Since the problem has no exact solution, we compare the

result with those obtained using the fixed random walk

method with A = 0.05 and 2000 walks and finite different

method with A = 0.05 and 500 iterations. The 2000 walks
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Fig. 6’. An electrostatic particle focusing system; for Example 3 (all di-

mensions are in cm).

TABLE II

RESULTS OF EXAMPLE 2
TABLE IH

RESULTS OF EXAMPLE 3

93

Exodus
Method

x Y
~

0.25 0.5 10.2I69
0.5 0.5 16.667

0.75 0.5 15.931

0.5 0.75 51.931,
0.5 0.25 6.2163

Fixed Random
Walk (V + 6)

Finite
Difference

v

9.7951 + 1.0593
16.602 + 1.0865

15.872 + 1.0247

50.775 & 2.0394
6.1069 + 0.9585

10.166

16.576

15.887

50.928
6.1772

Exodus

P z v

5 18 11.438
5 10 27.816

5 2 12.179
10 2 2.3523
15 2 0.38423

Finite
Fixed Random Difference
Walk (V ~ 6) v

10.75 ~ 0.6345 11.474
25.98 i- 1.777 27.869
11.44 + 0.8402 12.128
2.48 k 0.5528 2.3421
0.49 + 0.2648 0.3965

and 500 iterations were enough for the convergence of

random walk and finite difference solutions respectively.

Table II presents the results for five typical points. As

evident from the table, the Exodus method provides a

more accurate solution in less amount of time compared

with the fixed random walk. It is felt that the solution

from the Exodus method is as accurate as that from

finite difference method from the experience gained in

Example 1.

Example 3: The last example is an axisymmetric prob-

lem shown in Fig. 6. This particular example is actually

a prototype of an electrostatic particle focusing system

employed in a recoil-mass time-of-flight spectrometer. It

is intractable by analytic methods, yet presents no real dif-

ficulties for a Monte Carlo treatment. The fixed random

walk solution to this problem is presented in [5]. Using

the Exodus method, the potentials were calculated at five

typical points with A = 0.2 and N = 107. The results are

compared with both the fixed random walk and the finite
difference results in Table III. For the finite difference cal-

culations, A = 0.25 and A = 0.5 gave nearly the same

results for 1000 iterations. Again, it is evident from Table

III that the results of the Exodus and finite difference

methods closely agree. Also, it is noticed that the Exodus
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Fig. 7. Potential distribution alongp = 5 cm, O s z s 20cm; for Example3
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Fig. 8. Potential distribution alongz = 8cm,0 s p s 20 cm; for Example3.

method is more accurate than the fixed random walk. Figs.

7 and 8 show the potential distribution (obtained using the

Exodus method) along p = 5 cm, O s z s 20 cm and z

= 8 cm, 1 < p < 20 cm respectively.

IV. CONCLUSIONS

The Exodus method provides a relatively straightfor-

ward means of solving Dirichlet problems. The method

has been illustrated with three typical problems in rectan-

gular and axisymmetric solution regions. The method

provides a more accurate solution in less amount of time

compared with the fixed random walk. Although the
method is probabilistic in its approach, it is not subject to

randomness as other Monte Carlo techniques because it

does not involve the use of a pseudo-random generation

subroutine. It is also found that the Exodus method gives

a solution as accurate as that obtained with the finite dif-

ference method.
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